Inactivation of multidrug resistance proteins disrupts both cellular extrusion and intracellular degradation of cAMP.

نویسندگان

  • Moses Xie
  • Thomas C Rich
  • Colleen Scheitrum
  • Marco Conti
  • Wito Richter
چکیده

In addition to xenobiotics and several other endogenous metabolites, multidrug-resistance proteins (MRPs) extrude the second-messenger cAMP from various cells. Pharmacological and/or genetic inactivation of MRPs has been shown to augment intracellular cAMP signaling, an effect assumed to be a direct consequence of the blockade of cAMP extrusion. Here we provide evidence that the augmented intracellular cAMP levels are not due exclusively to the prevention of cAMP efflux because MRP inactivation is also associated with reduced cAMP degradation by phosphodiesterases (PDEs). Several prototypical MRP inhibitors block PDE activity at concentrations widely used to inhibit MRPs. Their dose-dependent effects in several paradigms of cAMP signaling are more consistent with their potency in inhibiting PDEs than MRPs. Moreover, genetic manipulation of MRP expression results in concomitant changes in PDE activity and protein levels, thus affecting cAMP degradation in parallel with cAMP efflux. These findings suggest that the effects of MRP inactivation on intracellular cAMP levels reported previously may be due in part to reduced degradation by PDEs and identify MRP-dependent transport mechanisms as novel regulators of cellular PDE expression levels. Mathematical simulations of cAMP signaling predict that selective ablation of MRP-dependent cAMP efflux per se does not affect bulk cytosolic cAMP levels, but may control cAMP levels in restricted submembrane compartments that are defined by small volume, high MRP activity, limited PDE activity, and limited exchange of cAMP with the bulk-cytosolic cAMP pool. Whether this regulation occurs in cells remains to be confirmed experimentally under conditions that do not affect PDE activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter.

Tyrosine kinase inhibitors (TKIs) are promising new agents for specific inhibition of malignant cell growth and metastasis formation. Because most of the TKIs have to reach an intracellular target, specific membrane transporters may significantly modulate their effectiveness. In addition, the hydrophobic TKIs may interact with so-called multidrug transporters and thus alter the cellular distrib...

متن کامل

Differential protein expression in Mycobacterium tuberculosis susceptible and multidrug resistant isolates

Introduction: Infections by multidrug resistant Mycobacterium tuberculosis (MDR-TB) is a major public health challenge. Secretion of proteins by M. tuberculosis plays an important role in the pathogenesis of the bacterium. We compared the protein profiles of susceptible M. tuberculosis and MDR-TB isolates using proteomic analyses, namely two dimensional gel electrophoresis (2DE) and mass spectr...

متن کامل

Physiological functions of multidrug transporters in yeast

Overexpression of drug extrusion pumps belonging to the ABC (ATP-binding cassette) super family of proteins is one of the most common mechanisms of multidrug resistance in various organisms. Both pathogenic and non-pathogenic yeast cells also become resistant to a variety of drugs by overexpressing genes encoding ABC drug efflux pumps. Recent evidences reveal that not only the well-characterize...

متن کامل

New perspectives in signaling mediated by receptors coupled to stimulatory G protein: the emerging significance of cAMP efflux and extracellular cAMP-adenosine pathway

G protein-coupled receptors (GPCRs) linked to stimulatory G (Gs) proteins (GsPCRs) mediate increases in intracellular cyclic AMP as consequence of activation of nine adenylyl cyclases , which differ considerably in their cellular distribution and activation mechanisms. Once produced, cyclic AMP may act via distinct intracellular signaling effectors such as protein kinase A and the exchange prot...

متن کامل

Expression of Recombinant Phosphodiesterase 3A and 3B Using Baculovirus Expression System

Background: Phosphodiesterase 3A (PDE3A) and phosphodiesterase 3B (PDE3B) play a critical role in the regulation of intracellular level of adenosine 3´,5´-cyclic monophosphate (cyclic AMP, cAMP) and guanosine 3´,5´-cyclic monophosphate (cyclic GMP, cGMP). Subsequently PDE3 inhibitors have shown to relax vascular and inhibit platelet aggregation in cardiovascular disease. Objectives: In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 80 2  شماره 

صفحات  -

تاریخ انتشار 2011